The Algebra of Shapes
نویسنده
چکیده
This thesis investigates a new representation scheme for geometric modeling, based on an algebraic model for shapes and formalized using a boundary representation. The algebraic model is mathematically uniform for shapes of all kinds and provides a natural and intuitive framework for mixed-dimensional shapes. The corresponding maximal element representation is essential to the concept of shape emergence. The representation scheme particularly supports computational design as a generative process of search or exploration. This thesis begins with a treatment of the algebraic and geometric properties of shapes and gives a formal and complete definition of the maximal element representation for n-dimensional shapes in a k-dimensional space (n ≤ k). Efficient algorithms are presented for the algebraic operations of sum, product, difference and symmetric difference on shapes of plane and volume segments. An exploration of related research in shape grammars, computational design and construction simulation, illustrates the potential of this representation scheme, while an agenda for future research depicts its present shortcomings.
منابع مشابه
The Hopf Algebra of Skew Shapes, Torsion Sheaves on A/f1 , and Ideals in Hall Algebras of Monoid Representations
We study ideals in Hall algebras of monoid representations on pointed sets corresponding to certain conditions on the representations. These conditions include the property that the monoid act via partial permutations, that the representation possess a compatible grading, and conditions on the support of the module. Quotients by these ideals lead to combinatorial Hopf algebras which can be inte...
متن کاملStandard Young tableaux for nite root systems
The study of representations of aane Hecke algebras has led to a new notion of shapes and standard Young tableaux which works for the root system of any nite Coxeter group. This paper is completely independent of aane Hecke algebra theory and is purely combinatorial. We deene generalized shapes and standard Young tableaux and show that these new objects coincide with the classical ones for root...
متن کاملCommutative pseudo BE-algebras
The aim of this paper is to introduce the notion of commutative pseudo BE-algebras and investigate their properties.We generalize some results proved by A. Walendziak for the case of commutative BE-algebras.We prove that the class of commutative pseudo BE-algebras is equivalent to the class of commutative pseudo BCK-algebras. Based on this result, all results holding for commutative pseudo BCK-...
متن کاملOn Character Space of the Algebra of BSE-functions
Suppose that $A$ is a semi-simple and commutative Banach algebra. In this paper we try to characterize the character space of the Banach algebra $C_{rm{BSE}}(Delta(A))$ consisting of all BSE-functions on $Delta(A)$ where $Delta(A)$ denotes the character space of $A$. Indeed, in the case that $A=C_0(X)$ where $X$ is a non-empty locally compact Hausdroff space, we give a complete characterizatio...
متن کاملInvariant elements in the dual Steenrod algebra
In this paper, we investigate the invariant elements of the dual mod $p$ Steenrod subalgebra ${mathcal{A}_p}^*$ under the conjugation map $chi$ and give bounds on the dimensions of $(chi-1)({mathcal{A}_p}^*)_d$, where $({mathcal{A}_p}^*)_d$ is the dimension of ${mathcal{A}_p}^*$ in degree $d$.
متن کاملLie triple derivation algebra of Virasoro-like algebra
Let $mathfrak{L}$ be the Virasoro-like algebra and $mathfrak{g}$ itsderived algebra, respectively. We investigate the structure of the Lie triplederivation algebra of $mathfrak{L}$ and $mathfrak{g}$. We provethat they are both isomorphic to $mathfrak{L}$, which provides twoexamples of invariance under triple derivation.
متن کامل